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Abstract

A unified mixed, higher-order analytical formulation has been presented in this paper to predict general buckling as

well as wrinkling of a general multi-layer, multi-core sandwich plate having any arbitrary sequence of stiff layers and

cores. Assumptions of thin stiff layers and anti-plane core, which are usually made in the analysis of sandwiches, have

been eliminated in the present formulation. Displacements as well as the transverse stress continuities have been en-

forced in the formulation by incorporating them as the degrees-of-freedom. The modal transverse stresses have been

obtained directly as eigen vectors and thus their separate calculations have been advantageously avoided. Two sets of

mixed models have been proposed on the basis of individual layer as well as equivalent single layer (ESL) theories by

selectively incorporating non-linear components of Green�s strain tensor. Solutions from the models have been shown
to be in excellent agreement with the available three-dimensional elasticity solutions as well as with the available ex-

perimental results. It has been demonstrated that the ESL theories cannot accurately evaluate the overall buckling as

well as the wrinkling loads of sandwiches. Limitations of the typical simplifying assumptions have also been high-

lighted.

� 2003 Published by Elsevier Ltd.
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1. Introduction

Sandwich plates have been used widely in aerospace, shipbuilding, construction and other industries

because of their lightweight, high stiffness, durability and high structural efficiency. The use of fiber rein-

forced composite face sheets reduces thermal conductivity through thickness, therefore such sandwiches
can withstand high service temperature.

Sandwich panels subjected to in-plane compressive forces may buckle in various modes depending on the

material properties of the face sheets as well as the core and their relative stiffnesses. Sandwiches may

exhibit: (i) global or general buckling, (ii) face-sheet wrinkling, (iii) face-sheet dimpling (for discontinuous
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or honeycomb core); and (iv) shear crimpling. Further, delamination of faces may also occur from the core

if the bond strength is poor.

A review of literature on the modeling, analysis and design of sandwich plates has been presented by

Noor and Burton (1996). The three-dimensional elasticity solutions for general buckling of simply sup-
ported sandwich panels with composite face sheets have been presented by Noor et al. (1994). The sandwich

panels were analyzed for combined temperature change and the uniform edge compression.

Analytical approaches available in the literature are usually based on the following typical simplifying

assumptions:

ii(i) The transverse normal stress (rz) is very small in the face sheets as well as in the core.

i(ii) Faces are thin panels that are perfectly rigid for the out-of-plane shear. Therefore, the faces have only

the flexural strength and the in-plane shear rigidity.
(iii) The core is typically anti-plane, i.e. it only has finite out-of-plane shear rigidities.

A comprehensive work on sandwich construction has been presented by Allen (1969), wherein the zigzag

deformation pattern or a three-layered model was used for the analysis of sandwich beams and plates.

However, the analysis was based on the first-order shear deformation theory. The early works of Benson

and Mayers (1967) and Pearce and Webber (1971) dealt with the symmetric and anti-symmetric modes of

buckling, which were analyzed separately. Benson and Mayers (1967) investigated the general stability and

face wrinkling modes of sandwich panels by applying the variational principle to potential energy of a
panel. The Lagrange multipliers were used to introduce face core continuity. Pearce and Webber (1971)

obtained the overall buckling and wrinkling loads for sandwich plates with orthotropic faces and core.

Hunt et al. (1988) and Hunt and Da Silva (1990) used an approach based on energy methods and

superposition of symmetric and asymmetric modes. However, the approach was restricted to certain

configurations and boundary conditions. Sandwich plate buckling problems have also been evaluated

analytically by Rao (1985), Kim and Hong (1988), Ko and Jackson (1993), Aiello and Ombres (1997) and

Hadi and Matthews (1998, 2000).

Higher-order shear deformation theories are being applied to sandwich construction recently. Frostig
(1998), for example, obtained general as well as local buckling loads for sandwich panels consisting of two

faces and a soft orthotropic core. However, the analysis was based on the above-mentioned simplifying

assumptions. Kant and Swaminathan (2000) have also presented a displacement based higher-order for-

mulation in which the above mentioned simplifying assumptions were eliminated. However, the formula-

tion was based on an equivalent single layer (ESL) theory, which cannot accurately predict the local

buckling modes.

Majority of these efforts have been confined to single core construction with two facings. The stability

problem of multi-core sandwich plates has been comparatively less explored despite their wide application
in the aircraft industry. Wong and Salama (1967) obtained series solutions by using the Lagrange for-

mulation of variational calculus in which a common shear angle was assumed for all the core layers. Chan

and Foo (1977) presented a finite strip method (FSM) for multi-layer sandwich plates.

An extensive literature survey reveals that the buckling analysis of sandwich plates is invariably based on

some simplifying assumptions in either material behavior and/or in modeling their structural behavior.

Moreover, higher-order theories have been applied to analyze the sandwich plates having single core.

Majority of the approaches consider the general and local buckling modes to be uncoupled. The objective

of the present paper is to fill these gaps in the literature and to present a unified approach based on the
mixed higher-order theory that can predict both general as well as wrinkling modes of buckling. Further,

the above-mentioned simplifying assumptions have been advantageously eliminated for general multi-layer

sandwiches having any number of cores and stiff layers placed arbitrarily. The theory is applicable espe-

cially to orthotropic sandwich plates.
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Recently, the authors (Dafedar and Desai, 2002) have presented a mixed higher-order formulation by

considering six degrees-of-freedom (DOF), viz. three displacement components, u, v and w (along x, y and z
directions, respectively) and three transverse stress components, sxz, syz and rz. These transverse stresses

have been invoked from the assumed displacement fields by using the constitutive law. Equilibrium
equations have been derived by using the minimum potential energy principle. Thus, the method presented

differs from the other higher-order theories in following ways. It is based on the minimum potential energy

principle. The method explicitly satisfies the requirements of through-thickness continuity of transverse

stress components and continuous displacement fields as both are incorporated in the DOF. Further, the

fundamental elasticity relations between stress and displacement fields have been maintained at all points of

an elastic continuum. Moreover, it enables the direct computation of the transverse stress components as

eigenvectors.

Two sets of mixed models HYF1 and HYF2 have been presented by selectively incorporating non-linear
components of Green�s strain tensor. Individual layer theory (ILT) based HYF1 models have been for-
mulated by considering a local cartesian co-ordinate system at the mid-surface of each individual layer. Six

DOF are assigned to bottom as well as top surfaces of each individual layer. The condition of traction-free

surface has not been enforced in the models for a consistent comparison with the data available in the

literature. Therefore, the total number of DOF in HYF1 always equals ½ðN þ 1Þ � 6� for N layered sand-

wich plate. Finer discretization of layers in z-direction in HYF1 models leads to transverse stresses that are
close to zero indicating traction free surfaces. On the other hand, the global mixed models HYF2 have been

formulated by considering cartesian co-ordinate system at the mid-surface of entire sandwich and by as-
signing six DOF to bottom as well as top surface of the entire plate. Hence, total number of DOF always

remains 12 in HYF2 models. The two mixed models have been applied in this paper to a general multi-

layer, multi-core sandwich plate having any arbitrary sequence of stiff layers and cores.
2. Formulation

A rectangular sandwich plate of plan dimensions Lx by Ly and thickness H has been considered as shown
in Fig. 1. The sandwich is composed of uniform thickness layers of homogeneous and orthotropic material.
Any number of stiff layers and core are assumed to be placed arbitrarily. Three-displacement components

uðx; y; zÞ, vðx; y; zÞ and wðx; y; zÞ at any point in a lamina can be expanded in terms of thickness coordinate, z,
by using the Taylor�s series expansion as
ukðx; y; zÞ ¼
X3
j¼0

zjakjðx; yÞ ð1Þ
Here, uk (k ¼ 1; 2; 3) represent three displacement components, u, v, w, respectively and akj indicate the
generalized co-ordinates.
2.1. Constitutive law

Each lamina in a sandwich has been considered to be in a three-dimensional state of stress. Constitutive

relations for a typical ith orthotropic lamina can be expressed as
frgi ¼ ½C�ifegi ð2Þ
Here, frgi and fegi are stresses and the linear strain components, respectively, referred to the lamina co-
ordinates and ½C�i represents a matrix of elastic constants of the ith lamina.



Fig. 1. Sandwich plate geometry, co-ordinate axes and DOF for: (a) ith layer of a sandwich plate in conjunction with HYF1 model;
(b) sandwich plate.
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2.2. Green’s strain tensor

Following components of Green�s strain tensor have been considered in the analysis.
ex ¼ u0 þ 1
2
½d1ðu0Þ2 þ d2ðv0Þ2 þ d3ðw0Þ2�

ey ¼ v� þ 1
2
½d1ðu�Þ2 þ d2ðv�Þ2 þ d3ðw�Þ2�

ez ¼ w
cxy ¼ u� þ v0 þ d1ðu0u�Þ þ d2ðv0v�Þ þ d3ðw0w�Þ
cyz ¼ w� þ v
cxz ¼ uþ w0

ð3aÞ
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feg ¼ fegL þ fegNL ð3bÞ

where 0, � and bar atop a character indicate derivatives with respect to x, y and z directions, respectively. The
linear part of strain–displacement relations fegL has been used to derive the lamina property matrices. On
the other hand, the non-linear strain–displacement relations fegNL have been employed to derive the
geometric property matrices of a lamina. Laminates do not buckle under the application of external stresses

in z-direction (rz) and the transverse shear stresses sxz and syz. Therefore, the non-linear terms from the
strains ez, cxz and cyz will not contribute to the work done by external stresses. Hence, these non-linear terms
are not included in Eq. (3a). Hybrid models HYF1j and HYF2j (j ¼ 0; 1; 2; 3) have been defined based on
values of the Kronecker deltas d1 to d3 used in Eqs. (3a) as follows.

(i) HYF13 and HYF23––d1 ¼ d2 ¼ d3 ¼ 1,
(ii) HYF12 and HYF22––d1 ¼ d3 ¼ 1; d2 ¼ 0,
(iii) HYF11 and HYF21––d1 ¼ 0, d2 ¼ d3 ¼ 1, and
(iv) HYF10 and HYF20––d1 ¼ d2 ¼ 0; d3 ¼ 1.

It can be noted from Eq. (3a) that the Von-Karman strain–displacement relations have been utilized

in models HYF10 and HYF20. Further, contributions of non-linear strains terms related with the u and v
displacements have been neglected in most theories available in the literature to simplify analysis.
2.3. Kinematics

Constitutive Eqs. (2) have been utilized in the description of kinematics to introduce the transverse
stresses as DOF. The stress–displacement expressions have been derived by substituting Eq. (1) in the linear

part of the strain–displacement relations shown in Eq. (3a). The ensuing equation is then substituted into

the Eq. (2). Consequently, equations for the stress DOF have been derived by substituting, z ¼ �f in the
resulting equations. Here, f is half the thickness of ith lamina (h1) for all individual layer mixed models
(HYF1), or half the thickness of entire sandwich (H1) for all HYF2 models. Similarly, the equations for
displacement DOF can be derived by substituting z ¼ �f in equation set (1). By solving two sets of
equations simultaneously, the generalized co-ordinates are expressed in terms of the DOF. Thus, the dis-

placement field can be expressed in terms of DOF as
u
v
w

8<
:

9=
; ¼ ½N1�fqg þ ½N2�fqg0 þ ½N3�fqg� ð4Þ
Here, ½N1�, ½N2� and ½N3� are 3 · 12 shape function matrices (Dafedar and Desai, 2002). On the other hand,
fqg is a vector of DOF given by
fqg ¼ f ur ðsxzÞr wr ðrzÞr vr ðsyzÞr us ðsxzÞs ws ðrzÞs vs ðsyzÞs g
t ð5Þ
Subscripts �r� and �s� in Eq. (5) indicate bottom and top surface of ith layer in all HYF1 models. However,
they represent the bottom and top surfaces of the entire sandwich in all HYF2 models.
2.4. Strain–displacement relations

Substitution of Eqs. (4) in linear part of Eqs. (3a) yields the linear strain–displacement equation
fegL ¼ ½a�fqg þ ½b�fqg0 þ ½d�fqg00 þ ½e�fqg� þ ½f �fqg�� þ ½g�fqg�0 ð6Þ
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where ½a�, ½b�, ½d�, ½e�, ½f � and ½g� are 6 · 12 nodal strain–displacement matrices that can be derived from the
shape function matrices.

By substituting Eqs. (4) into the non-linear parts of Eqs. (3a), the relevant non-linear strain terms can be

expressed as
ouk
ox

� 	2
¼ ½fN1ðk; jÞgfqg0 þ fN2ðk; jÞgfqg00 þ fN3ðk; jÞgfqg�0�2

ouk
oy

� 	2
¼ ½fN1ðk; jÞgfqg� þ fN2ðk; jÞgfqg0� þ fN3ðk; jÞgfqg���2

ð7Þ
where fNpðk; jÞg (p ¼ 1; 2; 3 and j ¼ 1–12) indicate kth row of the 3 · 12 shape function matrices. Eqs. (4),
(6) and (7) are the general equations representing displacements, linear strains and the relevant non-linear

strains respectively, at any point in the sandwich.
2.5. Potential energy of a lamina

The potential energy, Pi, of a typical ith layer enclosing a space volume, V , can be expressed as
Pi ¼ Ui 
 W i ð8Þ
where Ui represents the strain energy stored in the lamina and W i indicates the work done by exter-

nally applied stresses rpix and rpiy acting in the x and y directions, respectively. By substituting the expres-
sions for strain energy and the work done in Eq. (8), the potential energy of a lamina can be written

as
Pi ¼ 1
2

Z
v
fegTL½C�

ifegL dv

Z
v

rpix ðexÞNL dv
�

þ
Z
v

rpiy ðeyÞNL dv
�

ð9Þ
2.6. Lamina equations

Following trial solutions have been considered, which satisfy simple support conditions.
uj ¼ Aj cos k1x sin k2y ðsxzÞj ¼ Bj cos k1x sin k2y

wj ¼ Cj sin k1x sin k2y ðrzÞj ¼ Dj sin k1x sin k2y

vj ¼ Ej sin k1x cos k2y ðsyzÞj ¼ Fj sin k1x cos k2y; j ¼ r; s

ð10Þ
Here, k1 ¼ mp=Lx, k2 ¼ np=Ly , m and n are the wave numbers indicating a specific buckling mode.
By substituting equation set (10) into Eq. (9), the ensuing equation can be obtained by applying vari-

ational principle as
½K�i
h


 rpix ½KG1�i 
 rpiy ½KG2�i
i
fqag ¼ 0 ð11Þ
where
fqag ¼ fAr Br Cr Dr Er Fr As Bs Cs Ds Es Fsgt ð12Þ
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2.7. Global equations

2.7.1. HYF1––individual layer models

Matrices ½Ki� and ½KG�i of various laminae are assembled by enforcing continuities of displacements and
the transverse stresses at the interfaces of the laminae to form the global matrices ½K� and ½KG� for the entire
sandwich plate. The global equations can then be written as
½K� 
 kcr½KG� ¼ ½0� ð13aÞ
where
½KG� ¼ rpx ½KG1� þ rpy ½KG2� ð13bÞ
The critical buckling coefficient kcr can be evaluated by employing a generalized eigenvalue solver. Sub-
sequently, the buckling stresses can be expressed as
rpxcr ¼ kcrr
p
x and rpycr ¼ kcrr

p
y :
2.7.2. HYF2––equivalent single layer models

Global matrices of the entire sandwich are evaluated by summing the respective matrices of all the

laminae for HYF2 models as
½K� ¼
XN
i¼1

½K�i and ½KG� ¼
XN
i¼1

½KG�i ð14Þ
By substituting these global matrices in Eq. (13a), the critical buckling coefficient kcr can be evaluated.
3. Illustrative examples

Various mixed models were applied to compute uni-axial buckling loads of simply supported sand-

wich plates. Two types of buckling modes viz. general buckling and the wrinkling modes were assessed

for every sandwich plate. Generally, the overall buckling load for thin as well as moderately thick square

panels corresponds to the wave numbers m and n equal to unity. The possibility of wrinkling has been
assessed by increasing the value of wave number m in steps of one. The sandwich plate would fail in the
wrinkling mode if the critical load with higher wave number is less than the overall buckling load. The wave

number n has been considered to be unity for both the types of buckling of all the panels. Present results
have been validated by comparing them with the 3-D elasticity, experimental and other analytical solutions

available in the literature. The errors involved due to typical simplifying assumptions have been high-

lighted.

Different material property sets considered in the illustrative examples have been tabulated under Table

1. Uni-axial buckling loads have been expressed in terms of non-dimensional parameters ku and k0
u for a

consistent comparison such that
ku ¼
PxcrL2y
Ef2H 3

ð15aÞ

k0
u ¼

PxcrL2y
p2D

ð15bÞ



Table 1

Various material property sets used in the illustrative examples

Material set Properties

1 Face sheets––orthotropic

E1=E2 ¼ 19, E3 ¼ E2, G12=E2 ¼ G13=E2 ¼ 0:52, G23=E2 ¼ 0:338, m12 ¼ m13 ¼ 0:32, m23 ¼ 0:49
Core––orthotropic

E1=E2f ¼ 3:2� 10
5, E2=E2f ¼ 2:9� 10
5, E3=E2f ¼ 0:4, G12=E2f ¼ 2:4� 10
3, G13=E2f ¼ 7:9� 10
2,
G23=E2 ¼ 6:6� 10
2, m12 ¼ 0:99, m13 ¼ m23 ¼ 3� 10
5
(Source: Noor et al., 1994)

2 Isotropic aluminium face plate––E ¼ 70; 000 MPa, m ¼ 0:3, Hply ¼ 0:65 mm
CFRP face plate––E1 ¼ 142 GPa, E2 ¼ E3 ¼ 9:8 GPa, m12 ¼ m13 ¼ m23 ¼ 0:34, G12 ¼ G13 ¼ G23 ¼ 4:3
GPa, Hply ¼ 0:125 mm
Core I––E1 ¼ E2 ¼ G12 ¼ 1� 10
5 MPa, m12 ¼ m13 ¼ m23 ¼ 1� 10
5
E3 ¼ 298 MPa, G13 ¼ 60 MPa, G23 ¼ 35:2 MPa, Hc ¼ 5 mm
Core II––E1 ¼ E2 ¼ G12 ¼ 1� 10
5 MPa, m12 ¼ m13 ¼ m23 ¼ 1� 10
5, E3 ¼ 109 MPa, G13 ¼ 26:6 MPa,
G23 ¼ 15:5 MPa, Hc ¼ 25 mm
Adhesive layer––E ¼ 3050 MPa, m ¼ 0:3
(Source: Hadi and Matthews, 2000)

3 Face sheets––orthotropic

E1 ¼ 131 GPa, E3 ¼ E2 ¼ 10:34 GPa, m23 ¼ 0:49, m12 ¼ m13 ¼ 0:22, G12 ¼ 6:895 GPa, G13 ¼ 6:205 GPa,
G23 ¼ 6:895 GPa,
Core––isotropic

E1 ¼ E2 ¼ E3 ¼ 6:89� 10
3, G12 ¼ G13 ¼ G23 ¼ 3:45� 10
3, m12 ¼ m13 ¼ m23 ¼ 1� 10
5
(Source: Kant and Swaminathan, 2000)

4 Face sheets––isotropic

E=Gc ¼ 100 or 1000, m ¼ 0:3
Core––isotropic

Ec=Gc ¼ 2:6, m ¼ 0:3
(Source: Frostig, 1998)

5 No. Thickness in mm Ef in MPa m

Properties of isotropic stiff layers

1 1.270 0.2068· 106 (30· 106
psi)

0.3

2 1.905 0.0689· 106 (10· 106
psi)

0.3

3 2.540 0.0689· 106 (10· 106
psi)

0.3

4 1.524 0.2068· 106 (30· 106
psi)

0.3

Properties of isotropic cores

Gc in MPa

1 5.08 68.9442 (1.0· 104 psi) 0.00001

2 6.35 55.1553 (0.8· 104 psi) 0.00001

3 5.08 82.7330 (1.2· 104 psi) 0.00001

(Source: Lundgren and Salama, 1971)
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Here, Pxcr is the critical load in the x-direction and D is the flexural rigidity of the plate given by
D ¼
XNSL
i¼1

Efxid2i tfi
ð1
 m2fxyiÞ

ð16Þ
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where NSL represents number of stiff layers in a sandwich, Efxi is the modulus of elasticity of ith stiff layer in
x-direction, di and tfi are its distance from the neutral surface and the thickness, respectively, and mfxyi is the
Poisson�s ratio in plane xy.
3.1. Example 1: Sandwich plate with laminated cross-ply face sheets and an orthotropic core

A square symmetric sandwich plate of material 1 mentioned under Table 1 has been analyzed for
general as well as wrinkling type of buckling. The plate [(0�/90�)5/core/(90�/0�)5] consists of equal thick-
ness cross-ply laminated face sheets with 10 layers and a honeycomb, titanium core. Discretization of each

layer of the face into three sub-layers and the core into 10 sub-layers was found to yield converging

solutions for HYF1 models. However, such divisions did not improve results when HYF2 models were

used.

Noor et al. (1994) have presented 3-D elasticity solutions for the global buckling mode (m ¼ n ¼ 1)
for the uniform uni-axial edge compressive stress rpx applied to the panel. However, if the pre-buckling
deformation is assumed to consist of a uniform strain state and Poisson�s ratios of all the layers are
considered to be identical, the relative edge stresses in the individual layers are proportional to the

respective elastic moduli (Noor, 1975). The in-plane flexural rigidity of cores is comparatively

very small and hence the condition of uniform pre-buckling strain is more realistic for sandwiches.

Therefore, the sandwich panels are analyzed for the following two loading conditions in the present

example.

Case (I) Uniform state of stress in which all the layers are subjected to equal edge stresses; and

Case (II) Uniform state of strain in which the individual layers are subjected to stresses in proportion to
their elastic moduli.

The 3-D elasticity results have been presented graphically by Noor et al. (1994). The digitized data from

the graph and the general buckling and the wrinkling stress parameters obtained by the present mixed

formulations have been tabulated under Table 2. The buckling wave number m has been presented in

parenthesis along with each buckling load parameter. The first buckling load (with m ¼ 1) has been pre-
sented for each case for a consistent comparison with the available 3-D elasticity results. Other buckling

load, if any, obtained with higher wave number m, represents the lowest buckling load for that particular
case.

The general buckling load parameters obtained by HYF13 model for Case I are in excellent agreement

with the 3-D elasticity results. On the other hand, results from case II reveal that the thick sandwich plates

considered in the present example buckle at lower stresses in the wrinkling mode particularly, when the

ratio of Hf=H is small. Results obtained by the HYF23 model based on ESL theory are higher and non-

conservative as compared to those obtained by HYF13 model, which are based on ILT. The difference in

the results from these models is large for the wrinkling condition. Further, the difference increases with

increase in the thickness of face sheets.
Thus, it can be concluded from the present example that the ILT based, HYF13 model predicts results

that are in excellent agreement with the 3-D elasticity results. Further, the model is also capable of pre-

dicting the wrinkling behavior. On the contrary, results obtained by the HYF23 model reveals that the ESL

theories fail to accurately evaluate overall buckling as well as wrinkling loads in sandwiches. Finally, as the

in-plane flexural rigidity of cores is generally very small, the condition of uniform pre-buckling strain seems

more realistic for the stability analysis of sandwiches. Therefore, this condition of loading has been as-

sumed in all the examples presented below.



Table 2

Buckling load parameter ku for square, symmetric sandwich plate in Example 1

Hf=H Lx=H 3-D Elast.a Case I Case II

HYF13 HYF23 HYF13 HYF23

0.025 20 2.5543 (1) 2.5563 (1) 2.6538 (1) 2.5390 (1) 2.6386 (1)

10 2.2376 (1) 2.2370 (1) 2.3362 (1) 2.1904 (1) 2.2942 (1)

NA – – 1.2766 (57) 1.4395 (54)

20/3 1.8438 (1) 1.8577 (1) 1.9547 (1) 1.7952 (1) 1.8980 (1)

NA – – 0.5680 (38) 0.6407 (36)

5 1.5027 (1) 1.5063 (1) 1.5971 (1) 1.4427 (1) 1.5393 (1)

NA – – 0.3200 (28) 0.3611 (27)

0.05 20 4.6590 (1) 4.6645 (1) 4.8067 (1) 4.6386 (1) 4.7857 (1)

10 3.7375 (1) 3.7307 (1) 3.8919 (1) 3.6759 (1) 3.8475 (1)

NA – – 2.8002 (43) 3.4713 (37)

20/3 2.7911 (1) 2.8079 (1) 2.9668 (1) 2.7506 (1) 2.9222 (1)

NA – – 1.2456 (29) 1.5440 (25)

5 2.0816 (1) 2.0915 (1) 2.2327 (1) 2.0426 (1) 2.1977 (1)

NA 1.9028 (2) – 0.7016 (22) 0.8697 (19)

0.075 20 6.4224 (1) 6.4212 (1) 6.5872 (1) 6.3914 (1) 6.5644 (1)

10 4.7637 (1) 4.7955 (1) 4.9962 (1) 4.7433 (1) 4.9580 (1)

NA – – 4.6321 (39) –

20/3 3.3729 (1) 3.3859 (1) 3.5788 (1) 3.3385 (1) 3.5466 (1)

NA 3.2527 (2) 3.4788 (2) 2.0595 (26) 2.6357 (21)

5 2.3973 (1) 2.4052 (1) 2.5655 (1) 2.3672 (1) 2.5461 (1)

NA 2.0508 (2) 2.2028 (2) 1.1597 (19) 1.4839 (15)

0.100 20 7.8969 (1) 7.8939 (1) 8.0771 (1) 7.8631 (1) 8.0544 (1)

10 5.6081 (1) 5.5931 (1) 5.8259 (1) 5.5463 (1) 5.7946 (1)

20/3 3.7883 (1) 3.7813 (1) 3.9951 (1) 3.7424 (1) 3.9752 (1)

NA 3.4711 (2) 3.7026 (2) 2.9284 (25) –

5 2.6051 (1) 2.6101 (1) 2.7824 (1) 2.5789 (1) 2.7719 (1)

NA 2.1553 (2) 2.2959 (2) 1.6483 (19) 2.1324 (14)

�NA� indicates the results are not available.
�–� indicates ku is not minimum in the higher modes.
aDigitized data from the graph given by Noor et al. (1994).
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3.2. Example 2: Comparison with experimental results

Pearce and Webber (1973) have presented experimental overall buckling and wrinkling loads for

sandwich panels, simply supported on all the four edges. The panels were of size Lx ¼ Ly ¼ 228 mm and

composed of various layers of material 2 as follows:

Overall buckling specimens

Panel (1) Aluminium face plates and core––I
Panel (2) (0�/90�/0�) carbon fiber reinforced polymer (CFRP) face plates and core––I
Wrinkling specimens

Panel (3) Aluminium face plates and core––II

Panel (4) 0� CFRP face plates and core––II
Panel (5) (0�/90�) CFRP face plates and core––II

Thickness of each ply of the face sheets corresponds to those mentioned in material set 2 except for panel

4 where the thickness of face sheet is 0.25 mm. The experimental loads and the loads estimated by various



Table 3

Overall buckling loads in N/mm for the panels considered in Example 2

Panel no. Expt.a HYF13 HYF23 Anal. Ib Anal. IIc

1 234 298.09 (1) 514.46 243 298

[353.42] (1) [593.07] NA [302]

299.42 (2) 658.81 NA NA

[353.44] (2) [733.35] NA NA

2 185 136.81 147.95 152 136.9

[167.69] [179.03] NA [156]

NA indicates results are not available.

[ ] results with incorporation of adhesive layers.
a Experimental results, Pearce and Webber (1973).
bAnalytical results, Pearce and Webber (1973).
cAnalytical results, Hadi and Matthews (2000).

Table 4

Wrinkling loads in N/mm for the panels considered in Example 2

Panel no. Expt.a HYF13 HYF23 Anal. Ib Anal. IIc

3 361 494.04 (19) 566.36 (19) 490 497

[515.43] (19) [585.96] (19) NA NA

4 191 157.60 (35) 184.29 (35) 160 161.3

[178.98] (32) [207.27] (33) NA [183.8]

5 137 76.23 (49) 91.03 (51) 77 77.43

[127.08] (38) [148.74] (39) [117] [130.4]

NA indicates results are not available.

[ ] results with incorporation of adhesive layers.
a Experimental results, Pearce and Webber (1973).
bAnalytical results, Pearce and Webber (1973).
cAnalytical results, Hadi and Matthews (2000).
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mixed models are presented in Table 3 for overall buckling and in Table 4 for wrinkling conditions. The

analytical results obtained by Hadi and Matthews (2000) and Pearce and Webber (1973) are also presented

for comparison.

Results obtained by the above two approaches are in good agreement with those obtained by HYF13

model. However, these analytical approaches are based on the typical simplifying assumptions that neglect
the transverse energies of the faces and the in-plane energies of the core. Therefore, such approaches are

applicable to sandwiches having thin faces and honeycomb type of core having negligible in-plane rigidities.

Incorporation of adhesive layers in the analysis improves accuracy of the results.

The experimental overall buckling load for panel 1 with aluminium faces is less compared to the present

results. The experimental error can be attributed to the development of transverse stresses in the direction

perpendicular to the direction of application of the external stresses due to the Poisson�s effect. Such an
effect would be less prominent in orthotropic faces where the stiffness in the transverse direction is com-

paratively less. Panel 1 was observed to buckle in two half waves during overall buckling (Pearce and
Webber, 1973) which has been confirmed by the HYF13 model as the overall buckling loads for the first

two modes are more or less equal. The experimental overall buckling load for the second panel is greater

than the present as well as the other analytical results. It may be due to the effect of end restraint provided

by the end blocks. Such an effect is less predominant in the first panel that buckled in two half waves. A

similar trend in the results can also be observed from Table 4 for the wrinkled specimens.
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3.3. Example 3: Sandwich plate with laminated cross-ply face sheets and an isotropic core

Uni-axial buckling load parameter ku of a square [0�/90�/core/90�/0�] sandwich plate of material 3 having
Hc=Hf ¼ 10 has been presented in Table 5. Here, Hc and Hf are thicknesses of the core and one complete
face sheet, respectively. Results obtained by Kant and Swaminathan (2000) by using displacement based

higher-order ESL theory (HSDT) have also been presented for comparison. They have considered only the

general buckling mode with mode numbers (1, 1). These results are in good agreement with the present ESL

model HYF23. However, it can be observed from Table 5 that the minimum general buckling loads would

be obtained at higher modes. The general buckling loads obtained by the ILT (HYF13 model) are less than

those obtained by the ESL theory (HYF23 model) because the ratio of Ef1=Gc is as high as 37,971 for the
sandwich plate under consideration. Such high ratio indicates a soft core. Difference in the general buckling

parameters obtained by the two approaches was found to reduce when Lx=H was increased. Thus, it may be
concluded from the present example that even though higher-order formulation is employed, the ESL

theories might fail to accurately predict the buckling loads for soft core sandwiches due to a vast difference

in the material properties of the faces and the core.
Table 5

Buckling load parameter ku for square, symmetric sandwich plate in Example 3

Lx=H HYF13 HYF23 HSDTa

2 0.0109 0.0325 0.0315

– 0.0224 (2) NA

4 0.0190 0.1014 0.0972

– 0.0786 (2) NA

10 0.0749 0.5409 0.5181

0.0585 (2) 0.3761 (3) NA

20 0.2659 1.6775 1.6220

0.1862 (3) 1.3392 (3) NA

30 0.5576 2.7719 2.6932

0.3801 (3) 2.6517 (2) NA

40 0.9181 3.5961 3.5256

0.6457 (3) – NA

50 1.3150 4.1712 4.1139

0.9775 (3) – NA

60 1.7209 4.5685 4.5323

1.3694 (3) – NA

70 2.1156 4.8471 4.8091

1.8145 (3) – NA

80 2.4862 5.0470 5.0164

2.2569 (2) – NA

90 2.8260 5.1938 5.1657

2.7109 (2) – NA

100 3.1324 5.3042 5.2794

3.1687 (2) – NA

– indicates buckling load parameter in the higher mode is not minimum.

NA indicates the results are not available.
aKant and Swaminathan (2000).
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3.4. Example 4: Sandwich plate with isotropic face sheets and an isotropic core

Uni-axial buckling load parameter k0
u of a sandwich plate with Ly=H ¼ 14:96 and H=Hf ¼ 40:1 have been

presented in Table 6. The plate consists of isotropic faces of equal thickness and an isotropic core. The
results have been obtained for Ef=Gc ¼ 100 as well for Ef=Gc ¼ 1000 indicating a strong and a weak core,
respectively. It can be observed from the results of both the mixed models that the response of the sandwich

plate with Ef=Gc ¼ 100 corresponds to an overall buckling mode. On the other hand, the sandwich plate
having Ef=Gc ¼ 1000 has been observed to buckle in a wrinkling mode with high mode numbers. The
overall buckling loads obtained by Allen (1969) are in good agreement with the results obtained by HYF13

model, particularly, for Ef=Gc ¼ 1000. However, the overall buckling loads obtained by Allen (1969) for
smaller values of Ef=Gc are relatively less due to the typical simplifying assumptions of ignoring the out-of-
plane energies of the faces and the in-plane energies of the core. Further, the wrinkling behavior cannot be
predicted by the zigzag three-layer model presented by Allen (1969). The results obtained by Frostig (1998)

by using a higher-order theory are too low as the formulation has been based on simplifying assumptions

except that energy of the core associated with the transverse normal stress (rz) has been incorporated.

Moreover, the results indicate a wrinkling behavior in both the panels. Therefore, the wrinkling loads

obtained by Frostig (1998) for the panel having Ef=Gc ¼ 100 can be attributed to the simplifying as-
sumptions and may not represent the true behavior of the sandwich plate. Thus, it may be concluded that

the simplifying assumptions may either lead to too conservative results or prediction of a wrong buckling

mode, especially, for isotropic cores having small Ef=Gc.
The normalized displacements and stresses obtained by the HYF13 model have been plotted in Fig.

2(a)–(e) for a square sandwich plate with Lx=H ¼ Ly=H ¼ 14:96, Ef=Gc ¼ 100 subjected to overall buckling
(m ¼ 1). These parameters are plotted in Fig. 3(a)–(e) for a similar plate with Ef=Gc ¼ 1000 subjected to
wrinkling at mode number m ¼ 39. A marked difference in the transverse stress variation can be observed
from Figs. 2(e) and 3(e) for the two types of buckling modes. The variation of the in-plane displacements

for the wrinkling mode has been indicated in Fig. 3(a) and it does not match with the variation assumed in
Table 6

Buckling load parameter k0
u for the sandwich plate considered in Example 4

Lx=Ly Ef=Gc ¼ 100 Ef=Gc ¼ 1000
HYF13 HYF23 Allena Frostigb HYF13 HYF23 Allena Frostigb

0.5 5.3295 (1) 5.5109 4.8574 NA 1.6164 (1) 1.8534 1.6161 NA

– – – 1.9413 1.0648 (19) – NA 0.6481

1.0 4.0432 (1) 4.1256 3.5888 NA 1.6164 (2) 1.8534 1.6161 NA

– – – 1.9413 1.0646 (39) – NA 0.6481

1.5 4.1844 (2) 4.2860 3.7443 NA 1.6164 (3) 1.8534 1.6161 NA

– – – 1.9413 1.0646 (58) – NA 0.6481

2.0 4.0432 (2) 4.1256 3.5888 NA 1.6164 (4) 1.8534 1.6161 NA

– – – 1.9413 1.0646 (77) – NA 0.6481

2.5 4.0674 (3) 4.1595 3.6273 NA 1.6164 (5) 1.8534 1.6161 NA

– – – 1.9413 1.0646 (97) – NA 0.6481

– indicates buckling load parameter in the higher mode is not minimum.

NA indicates the results are not available.
aAllen (1969).
b Frostig (1998).



Fig. 2. Variation of the normalized: (a) in-plane displacement (u=umax); (b) transverse displacement (w=wtop); (c) in-plane stress
(rx=rxmax); (d) transverse normal stress (rz=rzmax); and (e) transverse shear stress (sxz=sxzmax) for the sandwich plate (Ef=Gc ¼ 100) in
Example 4 subjected to overall buckling.
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the ESL theories. Thus, the ESL theories cannot accurately model the wrinkling behavior of sandwiches as

revealed by the results of the HYF23 model.
3.5. Example 5: Unsymmetric, multi-layer, multi-core sandwich plate

Uni-axial critical buckling loads (Pxcr) for a seven-layer sandwich plate (material 5) have been presented
in Table 7. The plate has been analyzed for Ly ¼ 2:54 m (100 in.) for different values of Lx. Results obtained

by the following approaches have also been presented for comparison.

(i) FSM by Chan and Foo (1977); and

(ii) Series solutions by Wong and Salama (1967).

Results obtained by the FSM (Chan and Foo, 1977) are in good agreement with the results of HYF13

model. However, the finite strip formulation is based on the typical simplifying assumptions. Wong and
Salama (1967) obtained the buckling loads of the multi-layer multi-core sandwich plate by assuming a



Fig. 3. Variation of the normalized: (a) in-plane displacement (u=umax); (b) transverse displacement (w=wtop); (c) in-plane stress
(rx=rxmax); (d) transverse normal stress (rz=rzmax); and (e) transverse shear stress (sxz=sxzmax) for the sandwich plate (Ef=Gc ¼ 1000) in
Example 4 subjected to wrinkling.

Table 7

Buckling load (Pxcr) in kN for an unsymmetric multi-layer sandwich plate considered in Example 5

Lx=Ly HYF13 HYF23 FSMa Series solutionb

0.4 17.5662 (1) 27.6759 18.7439 15.0677

0.7 12.0237 (1) 14.9620 12.4651 11.0440

1.0 11.3829 (1) 13.2204 11.7007 10.7030

1.2 12.0255 (1) 13.6682 12.3308 11.3901

1.6 14.7186 (1) 16.3706 15.0689 14.0522

11.5104 (2) 13.8833 NA NA

2.0 18.7672 (1) 20.6698 19.2168 17.9935

11.3829 (2) 13.2204 NA NA

NA indicates the results are not available.
a Chan and Foo (1977).
bWong and Salama (1967).
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common shear angle for all the cores in addition to the typical simplifying assumptions. Moreover, both the

approaches seem to presume that the minimum buckling load occurs at the mode number m ¼ 1. On the
contrary, longer plates tend to buckle in higher modes dividing the plate into approximately square panels.

Finally, as expected, the results obtained by the present ESL model (HYF23) are comparatively high.
4. Conclusions

A unified mixed, higher-order analytical formulation has been developed by using the minimum po-

tential energy principle for stability analysis of sandwich plates. Continuity of displacements as well as the

transverse stresses through thickness has been explicitly satisfied in the formulation. The proposed ILT

(HYF13 model) appears to accurately evaluate the overall buckling as well as wrinkling loads of sand-

wiches. On the contrary, results obtained by various ESL theories indicate that such theories cannot ac-

curately predict the wrinkling loads of sandwiches. Moreover, the over-all buckling loads obtained by such

theories are higher and non-conservative particularly, for the soft-core sandwiches due to a vast difference
in the material properties of the faces and the core. Therefore, it may be concluded that the ESL theories

that are adequate for the analysis of laminated composite plates, fail to accurately evaluate the overall

buckling as well as wrinkling response of sandwiches. Further, the usual assumptions of stiff layers and

anti-plane core may lead either to too conservative results or to prediction of a wrong buckling mode,

especially, for isotropic cores having small values of Ef=Gc ratios indicating a relatively strong core. Finally,
a marked difference in the variations of in-plane displacements and the transverse stresses has been ob-

served in the two modes of buckling of sandwiches. The wrinkling phenomenon is associated with com-

pressibility of cores. Therefore, an assumption of constant transverse displacement cannot lead to
prediction of wrinkling behavior in sandwiches.
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